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Summary

1.

 

Although population surveys often provide information on multiple species, these
data are rarely analysed within a multiple-species framework despite the potential for
more efficient estimation of population parameters.

 

2.

 

We have developed a multiple-species modelling framework that uses similarities in
capture/detection processes among species to model multiple species data more par-
simoniously. We present examples of this approach applied to distance, time of detection
and multiple observer sampling for avian point count data.

 

3.

 

Models that included species as a covariate and individual species effects were
generally selected as the best models for distance sampling, but group models without
species effects performed best for the time of detection and multiple observer methods.
Population estimates were more precise for no-species-effect models than for species-effect
models, demonstrating the benefits of exploiting species’ similarities when modelling
multiple species data. Partial species-effect models and additive models were also useful
because they modelled similarities among species while allowing for species differences.

 

4.

 

Synthesis and applications.

 

 We recommend the adoption of multiple-species modelling
because of  its potential for improved population estimates. This framework will be
particularly beneficial for modelling count data from rare species because information
on the detection process can be ‘borrowed’ from more common species. The multiple-
species modelling framework presented here is applicable to a wide range of sampling
techniques and taxa.
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Introduction

 

Most animal sampling methods are not species specific.
Methods such as small mammal trapping (Webb 1965;
Schwartz & Whitson 1986; Mengak & Guynn 1987),
mist netting birds (Nur, Jones & Geupel 1999), electrofish-
ing (Meador, McIntyre & Pollock 2003) and avian
point counts (Canterbury 

 

et al

 

. 2000; Thompson 2002)
all provide information on multiple species. Neverthe-
less, analyses of these types of data aimed at estimating
population parameters are frequently performed at the

individual species level. Because the capture/detection
process may be very similar among species, better
estimates of precision and more parsimonious models
are possible through analyses that exploit species’
similarities. Parsimonious models prioritize simplicity
and represent a balance between squared bias and
variance (Burnham & Anderson 2002). We demon-
strate the use of multiple-species modelling for single-
species parameter estimation with analyses of avian point
count surveys as an example of a widely applicable
modelling framework.

The methods implemented in this paper can also be
used to obtain estimates of community abundance in
order to monitor biodiversity. In order to carry out such
analyses, the method must be robust to species pooling
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to avoid bias as a result of  differences in detection
probabilities among species (Buckland 

 

et al

 

. 2004).
However, our focus is on improving single-species
parameter estimation by ‘sharing’ information on the
detection process across species and not community-
level parameters.

The point count survey method is a general sampling
approach used to estimate relative abundance and
density of bird populations (Ralph, Sauer & Droege 1995;
Thompson 2002). Several recent papers have emphasized
the necessity of  understanding the detection process
and the limitations of  using counts as indexes of
abundance (Nichols 

 

et al

 

. 2000; Farnsworth 

 

et al

 

.
2002; Rosenstock 

 

et al

 

. 2002). This focus on modelling
detectability has resulted in a greater application of
sampling methods that directly estimate detection pro-
babilities. Currently three distinct methods are available
for estimating abundance and modelling the detection
process from unrepeated point count surveys. First,
distance, or point transect, methods model the prob-
ability of detection as a function of distance from the
observer, and estimate the density of populations (Ramsey
& Scott 1979; Reynolds, Scott & Nussbaum 1980;
Buckland 

 

et al

 

. 2001). Secondly, multiple-observer
methods estimate the probability of detection by each
observer using a removal (primary–secondary observer)
(Nichols 

 

et al

 

. 2000) or capture–recapture (independent
observers) (Alldredge, Pollock & Simons 2006)
modelling framework. Distance and multiple-observer
methods assume all individuals in a sample area are
available for detection. Thirdly, the time of detection
method estimates the probability of  detection over
multiple time intervals using a first-detection removal
(Farnsworth 

 

et al

 

. 2002) or a multiple-detection capture–
recapture framework (Alldredge 

 

et al

 

. 2007). This
method estimates the combined probability that
an individual is available for detection and that it is
detected given that it is available.

The detection process modelled by all three methods
involves a bird making itself  available for detection and
the ability of  observers to detect an available bird.
In open habitats such as grasslands, detection may
be primarily visual, such that availability depends on a
bird being present and not hidden from view. In heavily
vegetated habitats, such as forests, detections are
primarily auditory (Scott, Ramsey & Kepler 1981) and
availability depends on both a bird’s presence and the
probability that the bird sings or calls during a count
(Farnsworth 

 

et al

 

. 2002). Standard approaches to
analysing these data generally estimate the detection
function for each species separately, ignoring similarities
among species (Ralph, Sauer & Droege 1995). Models
of the detection process using standard single-species
approaches are overparameterized when similarities
in the detection process exist among species. Multiple-
species models have fewer model parameters because
they exploit similarities among species.

We present a multiple-species modelling framework
for estimating single-species population parameters for

three methods of analysing point count data: distance
sampling, time of  detection and multiple observer
methods. Distance sampling uses recorded distances
from the observer to detected individuals to estimate
a detection function that describes the probability of
detecting an individual as a function of distance from
the observer. Time of detection sampling uses a capture–
recapture approach in which a count is divided into
several intervals and observers record whether or not
an individual is detected in each interval of the count.
The resulting detection history is used to estimate the
probability of detecting an individual in a given time
interval. The multiple observer method also uses a
capture–recapture framework by using the observations
of independent observers to develop a detection history
for each individual in the count.

We used point count data from primarily forested
habitats in the Great Smoky Mountains National Park,
USA, to classify 19 bird species into six groups based on
truncated maximum detection distance and similarities
in singing rates. If multiple-species models are supported,
they are likely to offer a significant advantage in
population studies if  more precise population estimates
can be computed. For each of  the three methods of
analysing point count data described above, we com-
pared the number of parameters, precision and bias of
multiple-species and individual-species models.

Our approach to incorporating information from
multiple species into models of the detection process
involved developing species groups based on assumed
similarities in the detection process among species. One
of the challenges of multiple-species modelling is develop-
ing a reasonable set of candidate models, particularly
when the number of species detected or captured is large.
Modelling all possible combinations of species is not
realistic. Our approach is to define biologically reason-
able groups of  species and examine differences and
similarities in the detection process within groups.
Species should be grouped based on similarities in charac-
teristics that affect the capture or detection process.
Unfortunately little is known on how various factors
affect detection of birds from auditory cues.

When birds are detected by ear, important components
of the detection process that can be used to group species
are: sound intensity (energy content of a song), sound
pitch (frequency of a song), sound modulation (variation
in either sound pitch or intensity; Richards 1981), singing
rate (Wilson & Bart 1985; McShea & Rappole 1997),
and typical perching height (e.g. ground, shrub or
canopy). Detection distance may serve as a surrogate
for characteristics that directly affect the distance at
which a sound can be heard.

 

Methods

 

 

 

Time-of-detection point transects of breeding songbirds
were conducted in the Great Smoky Mountains National
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Park during May and June from 1996 to 1999 (Shriner
2001). Survey points were located along low-use hiking
trails with a minimum of 250 m between points. Vegeta-
tion was closed-canopy deciduous hardwood forest;
consequently detections were primarily aural (more
than 95%).

All counts were conducted between dawn and 10:15
in the morning on days with good weather (no rain
or excessive wind). Observers were trained and tested
in identification and distance estimation prior to con-
ducting point counts. Counts were conducted for 10-
min intervals divided into three observation intervals,
the first 3 min, the next two min and the final five min of
the count. The time of initial detection and detections
in subsequent intervals were recorded. Detection
distance was estimated for all observations and laser
range finders were used to calibrate and verify distance
estimates at each point.

Data were limited to observations collected by a single
observer in 1998 to eliminate temporal and observer
effects in the models, resulting in a data set of  323
survey points. We omitted species with fewer than 50
observations from the analyses. While these surveys
allowed for both time of detection and distance analyses,
the two data sets were not comparable because the time
of detection analyses were based on observations from
all three time intervals while distance analyses were based
only on observations from the first 3-min interval.
Further, distance sampling does not account for the
portion of the population that is not available.

Multiple independent observer data were also collected
in the Great Smoky Mountains National Park. How-
ever, these data were collected independently in June
1999 and were not comparable with the other data
sets. Four independent observers participated in each
multiple observer point count. Observers were highly
trained and had been conducting point counts for 6
weeks prior to the survey. Three minute counts were
conducted at 70 points and followed a protocol similar
to that described previously, mapping the location of
each bird detected at a point. Each bird was tracked
during the point count to avoid double counting and to
simplify matching observations among observers.
Following each count observers compared their obser-
vations to determine the total number of birds detected
and to identify birds detected in common.

 

 

 

We used maximum detection distance, following 10%
truncation of the observations at the largest distances,
as the first criterion for defining species groups. Because
many characteristics (sound intensity, pitch, modula-
tion, etc.) can affect maximum detection distance, we
defined three general groups: (i) species with maximum
detection distance 

 

≤

 

 100 m; (ii) species with maximum
detection distance > 100 m and 

 

≤

 

 150 m; and (iii) species
with maximum detection distance > 150 m. Within these
groups, species were further grouped based on singing

rate rankings obtained from seven experts familiar
with the species and habitats used for our analyses.
Ranks were based on a scale from one to five, with one
indicating the smallest value (presumed lowest pro-
bability of  detection) and five indicating the highest
value (presumed highest probability of  detection).
These ranks were averaged across the seven experts.
Experts also ranked sound intensity, sound pitch and
sound modulation.

 

    


 

Model selection was based on Akaike’s information
criterion corrected for small sample size (AIC

 

c

 

)
(Burnham & Anderson 2002). We report 

 

∆

 

AICc values,
which reflect the difference between the AICc value of
a particular model and the model with the lowest AICc
value. The model with a 

 

∆

 

AICc of  zero is the most
parsimonious (best) model and competing models with
substantial empirical support are generally considered
to be those with 

 

∆

 

AICc < 2 (Burnham & Anderson
2002). We also present AIC

 

c

 

 weights, which describe
the weight of  evidence in favour of  a given model
relative to the set of candidate models (Burnham &
Anderson 2002).

 

 

 

We used the program 

 



 

 (Thomas 

 

et al

 

. 2002,
2005) to analyse the distance data, with species identi-
fication entered as an observation-level variable. This
scheme allowed for two multiple-species analytical
approaches: post stratification by species (Marques

 

et al

 

. 2001; Rosenstock 

 

et al

 

. 2002) and the use of
species as model covariates (Marques & Buckland 2003,
2004). We limited these analyses to observations from
the first 3-min interval, truncating the data at 10% of
the largest observed distances for all analyses, as
recommended by Buckland 

 

et al

 

. (2001).
We modelled the detection process within species

groups using three candidate models: (i) a common
detection function for all species within a group (no species
effect); (ii) different detection functions for each species
within a group (species effect) based on post-stratifying
on species; and (iii) a detection function with a common
shape parameter for all species, but using species as a
covariate to model the scale parameter. We tested the
following key functions and adjustments for detec-
tion functions for the models with and without species
effects for each species group comparison: uniform key
function, simple polynomial adjustment; half-normal
key function, cosine adjustment; hazard rate key func-
tion, cosine adjustment.

For the covariate models, we used both the half-
normal and hazard rate key functions with the multiple
covariate distance sampling (MCDS) analysis engine
of program 

 



 

 (Thomas 

 

et al

 

. 2005). The appro-
priate key function and adjustment models were selected
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using AIC

 

c

 

. AIC

 

c

 

 was subsequently used to choose
between the species-effect, no-species-effect and
covariate models. We compared the precision of models
with and without a species effect using the effective
detection radii (EDR) and density estimates (D) from
the distance analysis.

 

   

 

Single-species time of detection models are equivalent
to closed-population capture–recapture models (Otis

 

et al

 

. 1978) that account for variation in detection
probabilities associated with the length of the sampling
interval, differences in the probability of  first and
subsequent detections, and differences in the detection
probabilities of individual birds (Alldredge 

 

et al

 

. 2007).
Zeros in the capture history for this method can repre-
sent either a bird that did not sing in a given interval or
a bird that sang but was not detected by the observer,
which is why the method models both availability and
detectability. We used two-point finite mixture models
of heterogeneity (Norris & Pollock 1996; Pledger 2000)
to account for individual differences in detection pro-
babilities (Alldredge 

 

et al

 

. 2007). Finite mixture models
group the surveyed population into a finite number of
groups based on differences in detection probabilities.
For example, a population may consist of two groups
of birds, one group that is easily detected and has high
detection probabilities, and another group that is hard
to detect and has low detection probabilities. These models
require estimation of the proportion of individuals in
each group (

 

λ

 

) and the detection probabilities for each
group (

 

p

 

T

 

). We used the constrained form of the model,
in which detection probabilities for one of the mixtures
is equal to one (Farnsworth 

 

et al

 

. 2002; Alldredge 

 

et al

 

.
2007). While this is a strong assumption and violation
may lead to bias in abundance comparisons across time
or space, data sets with only three time intervals are
insufficient to estimate all parameters for an uncon-
strained model. We recommend future studies use
four or more time intervals to allow estimation of a full
two-point mixture model (Alldredge 

 

et al

 

. 2007). These
models can take one of three forms: heterogeneity only,
heterogeneity and differences between first and sub-
sequent detections, or heterogeneity and time interval
effects.

There are seven single-species candidate models for
the time of detection method (see Appendix S1 in the
supplementary material), which include models that
incorporate time, behaviour and heterogeneity effects.
The multiple-species time of detection method includes
20 candidate models based on the seven single-species
models (Alldredge 

 

et al

 

. 2007) with or without a species
effect (see Appendix S1 in the supplementary material).
Models with time and species effects can be parame-
terized in two ways: an interaction effect between time
and species (model ), or an additive effect between
time and species (model ). The interaction effect
model is equivalent to a single-species approach with

an equivalent number of parameters. The additive model
exploits similarities among species and only requires a
single parameter for each additional species.

We also present partial heterogeneity models (models
). These models assume detec-

tion probabilities are the same for all species in a group,
but the probability of being in one of the heterogeneity
mixtures is not the same for all species within the group.
In other words, 

 

p

 

T

 

 is the same for all species in the group
but 

 

λ

 

 differs. We assume that the biological mechanism
underpinning these models involves a process in which
the probability of  detection is similar among species
at the same breeding stage but varies among breeding
stages. Alldredge (2004) describes these models and
Appendix S1 (see the supplementary material) lists all
the models and the associated number of parameters.

We used the program 

 



 

 (White 1983) to estimate
the detection parameters and two-point mixture heter-
ogeneity parameters for the time of  detection data.
We assumed an instantaneous rates formulation for
detection probabilities. This approach was necessary to
parameterize models with no time effect because data
were based on unequal time interval counts (Alldredge

 

et al

 

. 2007). All candidate models were run initially, but
models with both time effects and differences between
probabilities of  first and subsequent detections were
omitted from further analysis because not all
parameters were identifiable.

Population estimates and standard errors were derived
from the estimated detection probabilities and hetero-
geneity parameters (Alldredge 

 

et al

 

. 2007). We report
the probability of detecting an individual at least once
during a count (

 

π

 

T

 

), the heterogeneity parameter (

 

7

 

)
and the population estimates (

 

N

 

) for the selected
model. For groups in which a species-effect model was
selected, we also report parameters for the alternative
no-species-effect model.

 

  

 

Independent observer data were analysed using the full
set of multiple observer models presented in Alldredge,
Pollock & Simons (2006) because data were collected
using four observers, allowing for full parameter estima-
tion. Single-species independent observer models
are equivalent to closed-population capture–recapture
models (Otis 

 

et al

 

. 1978) and account for observer
differences as well as differences in detectability for
individual birds (individual heterogeneity). Following
this approach, a zero in the capture history represents a
bird that was missed by a given observer but was detected
by at least one other observer. In the absence of model
covariates, the independent observer method includes
four single-species candidate models (Alldredge, Pollock
& Simons 2006). We used two-point finite mixture models
(Norris & Pollock 1996; Pledger 2000) to model heter-
ogeneity in detection probabilities among individual
birds. The parameters for this finite-mixture closed-
population capture–recapture model are  the detection

Mt
spp*

Mt
spp+

M M Mh
part

bh
part

th
part, , and 
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probability for each observer (i) and 

 

λ

 

, the proportion
of the population in one of the detection probability
group. Again, the groups represent birds that have
different detection probabilities, such as high and low
detection probabilities.

Excluding covariate models, we obtained 12 candidate
models for the multiple-species independent observer
approach by adding a species effect to the four single-
species candidate models. Observer and species effects
were modelled as either an interaction effect (model

) or an additive effect (model ). As above,
the interaction effect model was equivalent to the
single-species approach. The additive effect model used
the similarities among species as a single parameter for
each species added to the group. We also present a partial
individual heterogeneity effect, similar to that used
in the time of detection models, that allowed detection
probabilities to remain constant among species but the
probability of being in any particular mixture to vary
among species. Alldredge (2004) describes these models,
and Appendix S1 (see the supplementary material) lists
the complete set of models and associated number of
parameters.

We used program 

 



 

 (White & Burnham 1999)
with the ‘Huggins Closed Captures’ and ‘Huggins Full
Heterogeneity’ data types to analyse the four-independent
observer count data. We report the individual heter-
ogeneity parameter estimate (

 

7

 

), the observer-specific
detection probabilities and the population estimate
(

 

N

 

) for the selected model.

 

Results

 

 

 

Nineteen species from the time of detection/distance
data sets were selected for analysis. Three groups were
defined in the 

 

≤

 

 100 m category (groups A, B and C),
two groups in the 100–150 m category (groups D and E)
and one group in the over 150 m category (group F),
based on similarities in singing rates (see Appendix S2
in the supplementary material). Group sizes ranged
from two to four species.

Because fewer points were sampled using the multiple
observer method, sample sizes were sufficient for only
eight species. Therefore, no analysis was done for group
A, black-throated blue warbler 

 

Dendroica caerulescens

 

was omitted from group B, and indigo bunting 

 

Passerina
cyanea

 

 was omitted from group C. Scarlet tanager

 

Piranga olivacea

 

 (group D), ovenbird 

 

Seiurus aurocapillus

 

(group E) and tufted titmouse 

 

Baeolophus bicolor

 

(group F) were combined into a single group, DEF.

 



 

Species-covariate models were selected as the best model
for three of  the six groups (B, C and F) and always
had some support from the data (AIC

 

c

 

 weights 

 

≥

 

 0·12)
(Table 1), indicating similarities in the underlying detec-

tion process across species within these groups and
the utility of multiple-species modelling. A hazard rate
detection function was selected for groups B and C and
a half-normal detection function with a cosine adjust-
ment term was selected for group F. Species-effect models
(equivalent to a single-species approach) were selected
as the best model for two of the groups (A and E) and
had some support from the data (AIC

 

c

 

 weights 

 

≥

 

 0·17)
for all but group F. Uniform detection functions with
simple polynomial adjustment terms were selected
for both groups A and E. The no-species-effect model
was selected as the best model for group D but had little
support from the data (AIC

 

c

 

 weights 

 

≤

 

 0·03) for all other
groups. A uniform detection function with a simple
polynomial adjustment term was selected for group D.

Effective detection radii varied within groups, except
group D for which the no-species-effect model was
selected (Table 2). Differences in effective detection
radii among species were > 10 m for all other groups.
Estimates of  effective detection radii were similar
between the species-effect and species-covariate
models but were generally larger for the species-
covariate models. No assessment of distance measure-
ment error was made but measurement errors could
have been substantial because most detections of
birds were based on auditory cues with no visual
reference.

Density estimates for group D were identical for species-
effect and no-species-effect models, but the standard
errors were smaller for the no-species-effect model
(Table 2). The increase in precision was particularly
obvious for the veery 

 

Catharus fuscesens

 

 (0·018 for the
species-effect model and 0·009 for the no-species-effect
model), which had a smaller observed count. While
species with relatively few observations are likely to be
associated with larger gains in precision, we emphasize
the need for careful a priori grouping because these
species are also at greater risk of  undetected bias.
Density estimates were similar between the species-
covariate models and species-effect models but estimates
were more precise for the species-covariate models.

 

  

 

Models accounting for individual heterogeneity in
detection probabilities were selected as the most parsi-
monious models for all six species groups (Table 3).

Mobs
spp* Mobs

spp+

Table 1. ∆AICc and AICc weights (in parentheses) for distance
models using the first 3-min interval of the time of detection data

Species 
group

No species 
effect

Species 
effect

Species 
covariate

A 6·01 (0·03) 0·00 (0·64) 1·32 (0·33)
B 13·60 (0·00) 3·20 (0·17) 0·00 (0·83)
C 7·38 (0·02) 1·16 (0·35) 0·00 (0·63)
D 0·00 (0·62) 1·76 (0·26) 3·29 (0·12)
E 9·12 (0·01) 0·00 (0·66) 1·37 (0·33)
F 16·64 (0·00) 11·08 (0·00) 0·00 (1·00)
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Time effects were included in models selected for groups
B, C, E and F. Models with differences in detection
probabilities between first and subsequent detections
were never selected. All models including time effects

and differences between first and subsequent detections
did not give realistic estimates of detection probabilities
(probabilities > 1). The global model fit the observed
data and no extra-binomial variation was detected, so
a variance inflation factor (Burnham 

 

et al

 

. 1987) of one
was used for all models.

Models with no species effect were selected as the
most parsimonious models for groups A and C. Partial
species-effect models were selected for groups D and F.
Therefore, more parsimonious models were obtained
for the multiple-species approach for groups A, C, D
and F, indicating gains in estimate precision when
information on the detection process was shared
across species. The most general model accounting for
individual differences in detection probabilities with
a time and species interaction effect was selected for
both groups B and E, indicating that species effects
were important for these groups or that our grouping
criteria were not appropriate for these species (models
equivalent to a single-species approach).

Estimates of the probability that an individual of a
given species or species group (depending on the model
selected) was detected at least once during the 10-min,
three-interval count ranged from 0·81 (group F) to
0·92 (group E) (Table 4). The estimated heterogeneity
parameter (probability of being in the first heterogeneity
group) ranged from 0·15 to 0·79, with both estimates
occurring for species in group F. Models that used
common parameters among species in a group showed
increased precision for all parameter estimates. This
was most clearly seen in the increased precision for
the abundance estimates, particularly for species with
smaller observed counts (e.g. the indigo bunting in
group C). Note that abundance estimates apply only to
the area sampled.

 

Table 2.

 

Distance analysis results for species-effect models and for the selected model based on AIC

 

c

 

. The observed count is after 10% truncation of the
largest detection distances, EDR is the effective detection radius, and density is individuals per hectare. Standard errors are in parentheses

Group Species Model
Observed 
count

Species effect Selected model

EDR Density EDR Density

A Acadian flycatcher 

 

Empidonax virescens

 

Species effect 58 53·9 (6·86) 0·20 (0·041)
Black-and-white warbler 

 

Mniotilta varia

 

90 43·5 (1·63) 0·47 (0·072)
Golden-crowned kinglet 

 

Regulus satrapa

 

64 47·1 (2·34) 0·29 (0·061)
Worm-eating warbler 

 

Helmitheros vermivorus

 

56 46·9 (3·14) 0·25 (0·056)
B Black-throated blue warbler 

 

Dendroica caerulescens

 

Species covariate 145 59·9 (2·16) 0·40 (0·060) 56·6 (1·96) 0·45 (0·066)
Dark-eyed junco 

 

Junco hyemalis

 

109 49·2 (2·75) 0·44 (0·080) 58·4 (2·30) 0·31 (0·051)
Hooded warbler 

 

Wilsonia citrina

 

192 64·5 (4·41) 0·46 (0·078) 68·4 (1·82) 0·40 (0·046)
Blue-headed vireo 

 

Vireo solitarius

 

98 52·8 (4·88) 0·35 (0·079) 58·7 (2·44) 0·28 (0·044)
C Black-throated green warbler 

 

Dendroica virens

 

Species covariate 273 77·6 (2·98) 0·45 (0·049) 78·0 (1·49) 0·44 (0·038)
Indigo bunting 

 

Passerina cyanea

 

40 54·5 (2·03) 0·13 (0·027) 58·5 (3·85) 0·12 (0·027)
Red-eyed vireo 

 

Vireo olivaceus

 

270 78·8 (6·11) 0·43 (0·075) 78·8 (1·49) 0·43 (0·038)
D Scarlet tanager 

 

Piranga olivacea

 

No species effect 114 70·6 (1·85) 0·23 (0·029) 70·1 (1·51) 0·23 (0·025)
Veery 

 

Catharus fuscescens

 

39 69·0 (2·54) 0·08 (0·018) 0·08 (0·009)
E Ovenbird 

 

Seiurus aurocapillus

 

Species effect 328 72·3 (1·69) 0·62 (0·061)
Eastern towhee 

 

Pipilo erythrophthalmus

 

54 54·5 (1·75) 0·18 (0·037)
F Red-breasted nuthatch 

 

Sitta canadensis

 

Species covariate 30 104·9 (15·86) 0·03 (0·011) 129·2 (9·32) 0·02 (0·005)
Tufted titmouse 

 

Baeolophus bicolor

 

79 100·7 (9·11) 0·08 (0·018) 120·8 (5·51) 0·05 (0·009)
Winter wren 

 

Troglodytes troglodytes

 

80 105·7 (7·58) 0·07 (0·014) 120·6 (5·46) 0·05 (0·009)
Wood thrush 

 

Hylocichla mustelina

 

135 73·6 (10·84) 0·25 (0·077) 104·9 (3·88) 0·12 (0·017)

 

Table 3.

 

∆

 

AIC

 

c

 

 and 

 

∆

 

AIC

 

c

 

 weights (in parentheses) for time of detection multiple-species
models for unlimited radius plots with 10% truncation of the largest detection distances.
Smaller values of 

 

∆AICc indicate more parsimonious models. Larger weights indicate
more support for a given model. Models with weights ≥ 0·20 are in bold for each species
group, indicating competing models. Models with unrealistic parameter estimates were
omitted (blanks)

Model

Groups 

A B C D E F

55·5 (0·00)  145 (0·00)  124 (0·00) 41·1 (0·00) 72·1 (0·00)  180 (0·00)

58·3 (0·00)  123 (0·00)  127 (0·00) 36·9 (0·00) 73·4 (0·00) 84·0 (0·00)

43·6 (0·00)  131 (0·00)  106 (0·00) 36·3 (0·00) 59·8 (0·00)  143 (0·00)

36·2 (0·00) 79·3 (0·00) 48·4 (0·00) 36·4 (0·00) 52·3 (0·00) 44·4 (0·00)

51·4 (0·00)  108 (0·00)  107 (0·00) 34·4 (0·00) 61·2 (0·00) 48·5 (0·00)

55·9 (0·00)  147 (0·00)  123 (0·00) 43·1 (0·00) 74·1 (0·00)  182 (0·00)

62·6 (0·00)  115 (0·00)  125 (0·00) 40·7 (0·00) 75·6 (0·00) 92·2 (0·00)

0·0 (0·51) 20·3 (0·00) 3·6 (0·04) 3·2 (0·08) 5·8 (0·03) 75·2 (0·00)

4·5 (0·05) 4·3 (0·09) 5·0 (0·02) 0·0 (0·40) 6·6 (0·02) 5·9 (0·05)

9·6 (0·00) 8·4 (0·01) 7·2 (0·01) 1·9 (0·16) 7·7 (0·01) 8·9 (0·01)

2·0 (0·18) 22·3 (0·00) 5·6 (0·02) 5·2 (0·03) 7·9 (0·01) 77·3 (0·00)

6·6 (0·02) 6·3 (0·03) 7·0 (0·01) 2·1 (0·14) 8·6 (0·01) 8·0 (0·02)

18·1 (0·00) 15·7 (0·00) 11·1 (0·00) 6·1 (0·02) 11·8 (0·00) 17·3 (0·00)

1·7 (0·21) 21·0 (0·00) 0·0 (0·27) 15·1 (0·00) 22·3 (0·00) 69·4 (0·00)

6·4 (0·02) 5·3 (0·06) 1·3 (0·14) 2·0 (0·15) 0·8 (0·36) 0·0 (0·92)

23·7 (0·00) 19·2 (0·00) 0·23 (0·24) 16·8 (0·00) 12·9 (0·00) 10·8 (0·00)

17·3 (0·00) 0·0 (0·80) 0·14 (0·25) 6·5 (0·02) 0·0 (0·55) 10·5 (0·00) 

M0
0
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 

Heterogeneity models explained the information in
the independent observer data in a more parsimonious
manner for all three species groups than models not
incorporating heterogeneity (Table 5), indicating that
individuals within a species could be placed in either a
high- or low-detection probability group. The hetero-
geneity model with no observer or species effects was

selected for group B and was a reasonable alternative
model for the other two groups (∆AICc weights ≥ 0·22).
The heterogeneity model with no observer or species
effects on probabilities of detection and a partial species
effect on the heterogeneity parameter was selected
for group DEF and was also a reasonable alternative
model for groups B and C (∆AICc  weight ≥ 0·25). An
individual heterogeneity model with an observer effect
on the probability of detection and no species effect
was selected for group C. Again, the multiple-species
approach provided gains in estimate precision by
sharing information across species. As with the time of
detection models, a variance inflation factor (Burnham
et al. 1987) of one was used for all models because the
global model fit the observed data with no indications
of extrabinomial variation.

The heterogeneity parameter ranged from 0·34 to
0·58 for the independent observer model estimates. The
detection probability was generally > 0·90 for one of
the mixtures in the heterogeneity models for all species
groups. The detection probabilities for the other
mixtures were ≤ 0·36 for all species groups (Table 6).
Comparisons of the abundance estimates for the selected
model to the abundance estimates for the ‘best’ species-
effect model showed very similar estimates but consid-
erably smaller standard errors for the selected models,
with no or partial species effects.

Discussion

Application of  multiple-species models to popula-
tion survey data offers a promising approach when
more than one species occurs in the sample. We have
demonstrated that grouping species with similar detec-

Table 5. ∆AICc for the four independent observer multiple-
species models for unlimited radius plots with 10% truncation
of the largest detection distances. ∆AICc weights are in
parentheses. Models with weights ≥ 0·20 are in bold for each
species group indicating competing models

Models

Groups

B C DEF

56·33 (0·00) 103·52 (0·00) 114·68 (0·00)

55·94 (0·00) 103·22 (0·00) 107·66 (0·00)

61·04 (0·00) 105·35 (0·00) 116·26 (0·00)

60·69 (0·00) 105·07 (0·00) 109·22 (0·00)

70·55 (0·00) 109·37 (0·00) 111·91 (0·00)

0·00 (0·72) 0·76 (0·22) 1·18 (0·26)

2·10 (0·25) 0·40 (0·26) 0·00 (0·47)

7·73 (0·02) 4·47 (0·03) 4·61 (0·05)

9·20 (0·01) 0·00 (0·32) 5·91 (0·02)

11·34 (0·00) 1·30 (0·17) 4·29 (0·06)

17·42 (0·00) * 6·39 (0·02)

25·54 (0·00) * 2·70 (0·12)

*Models did not give realistic estimates. Standard errors for 
detection probabilities were much larger than one.

M0
0

M spp
0

Mobs
0

Mobs
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Mobs
spp*
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0

Mh
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Mobs h,
0
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,
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,
+
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Table 4. Parameter estimates for the time of detection method for each species. The probability that an individual is detected at least once during the count,
πT, the probability of being in the first heterogeneity group, 7, and the estimated abundance, N, are given for the best model and for the best single-species
model. The instantaneous rates formulation was used to estimate detection probabilities. Standard errors are given in parentheses

Group Species
Observed 
count

Selected model Alternative single-species model

πT 7 N πT 7 N

A Acadian flycatcher 87 0·89 (0·049) 0·58 0·047) 98 (6·4) 0·91 (0·172) 0·51 (0·115) 95 (18·2)
Black-and-white warbler 137 0·89 (0·049) 0·58 (0·047) 154 (9·5) 0·86 (0·113) 0·58 (0·078) 160 (21·7)
Golden-crowned kinglet 82 0·89 (0·049) 0·58 (0·047) 92 (6·1) 0·92 (0·089) 0·67 (0·155) 89 (9·0)
Worm-eating warbler 96 0·89 (0·049) 0·58 (0·047) 108 (6·9) 0·92 (0·249) 0·54 (0·098) 104 (28·5)

B Black-throated blue warbler 197 0·90 (0·094) 0·48 (0·081) 220 (23·6) Same model
Dark-eyed junco 189 0·83 (0·092) 0·72 (0·058) 227 (26·0)
Hooded warbler 274 0·84 (0·062) 0·65 (0·057) 326 (25·4)
Solitary vireo 148 0·91 (0·440) 0·42 (0·060) 163 (79·1)

C Black-throated green warbler 377 0·89 (0·053) 0·53 (0·035) 424 (26·2) 0·9 (0·066) 0·55 (0·057) 419 (31·5)
Indigo bunting 64 0·89 (0·053) 0·53 (0·035) 72 (5·2) 0·93 (0·505) 0·55 (0·092) 69 (37·6)
Red-eyed vireo 397 0·89 (0·053) 0·53 (0·035) 446 (27·5) 0·87 (0·086) 0·51 (0·048) 454 (45·6)

D Scarlet tanager 161 0·85 (0·067) 0·52 (0·062) 189 (16·0) 0·86 (0·085) 0·53 (0·068) 186 (19·0)
Veery 67 0·85 (0·067) 0·75 (0·088) 79 (7·2) 0·82 (0·111) 0·74 (0·093) 82 (11·9)

E Ovenbird 444 0·92 (0·053) 0·51 (0·062) 483 (28·6) Same model
Eastern towhee 79 0·89 (0·277) 0·50 (0·078) 89 (28·1)

F Red-breasted nuthatch 54 0·81 (0·062) 0·79 (0·087) 67 (6·4) 0·79 (0·139) 0·80 (0·099) 68 (12·7)
Tufted titmouse 104 0·81 (0·062) 0·78 (0·068) 128 (11·2) 0·77 (0·093) 0·78 (0·068) 135 (17·4)
Winter wren 106 0·81 (0·062) 0·50 (0·069) 131 (11·4) 0·87 (0·102) 0·56 (0·107) 121 (14·8)
Wood thrush 153 0·81 (0·062) 0·15 (0·047) 188 (15·9) 0·85 (0·331) 0·13 (0·047) 180 (70·4)
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tion processes results in more parsimonious models and
more precise estimates. Evidence from the analyses
presented here clearly indicates that, in many cases,
single-species models are overparameterized and a
more efficient use of data is achieved using multiple-
species models. Estimates from models that ‘shared’
information across similar species showed very little
bias relative to single-species models but were generally
much more precise.

Multiple-species analyses allow for direct comparisons
between models with and without species effects to
determine whether group-based parameter estimates
are warranted. Another approach to multiple-species
analyses simply assumes similarities among species
and analyses similar species as a group. This approach
has been used for less common species when observed
counts are not sufficient for a single-species approach
(Nichols et al. 2000). Our approach actually evaluates
similarities in detection probability among species and
can provide a justification for this type of analysis.

We used both quantitative and qualitative informa-
tion to define species groups. In general, the approach
used to define species groups should consider species’
characteristics that influence the detection process.
In our study, the use of maximum detection distance
worked well to categorize species into broad groups
but it did not allow complete classification of species
groups. Singing rate information provided a useful
framework for defining species groups within distance
categories. Although not used in these analyses, classi-
fications based on behaviour may also be helpful in
assigning a priori species groupings. For example, in
forested habitats it may be appropriate to group bird
species based on typical singing heights by separating
canopy species from those that sing closer to the ground.
Movement behaviour is another potential grouping
factor. While each of the methods presented here assumes
birds do not move during the recording period, grouping
species with considerably different movement charac-
teristics may cause bias, particularly for surveys with
longer recording times.

For surveys based on visual observations, factors such
as visibility, activity patterns, size and social behaviour
might be appropriate classification characteristics.
Direct measures of characteristics such as singing rates
and song frequencies used to define species groups are
desirable whenever possible.

Current knowledge of  the detection process and
the effects of various factors is very limited. The species
groups used in this paper were used to demonstrate
possible approaches to grouping species and our know-
ledge of factors that may influence detection probabilities.
Future implementation of the multiple-species approach
should include research to determine which factors
are most important in the detection process and
possibly quantitative measures of  these factors.
The limited information available on which charac-
teristics affect the detection process led us to using
maximum detection distance and rankings from
experts on other characteristics. Inappropriate
grouping could produce bias in model estimates and
reduce the benefits of  the multiple-species modelling
approach. In situations where detailed information
is not available, grouping based on expert knowledge
is a viable approach and worked well for our example
analyses.

A sequential approach to multiple-species modelling
could also be used, where the within-group structure is
examined first and then the between-group structure is
analysed to determine whether groups could be com-
bined to improve estimate precision without introduc-
ing substantial bias. The gains in precision are relative
to the number of  individuals in the survey for each
species. In our examples the number of  species in a
group was relatively small because there were several
common species with large sample sizes. If  a survey
consisted of  several species with small sample sizes
then species groups would need to consist of  more
species to obtain similar gains in precision.

Models based on distance sampling data generally
did not show as much improvement from sharing infor-
mation for multiple species data as observed for the

Table 6. Independent observer results based on the selected model for group B, C and DEF. The probability of being in the low 
or high detectability groups is given by 7 and the probability of detection by one of the four observers is given by π1, π2, π3 and π4. 
The abundance estimate N is given for the selected model and for the selected species-effect model

Group Species Count

Group probability and observer detection probabilities

Nselected Nspecies7 π1 π2 π3 π4

B Dark-eyed junco 36 0·24 (0·083) 41 (2·9) 44 (5·7)
Hooded warbler 38 0·34 (0·065) 0·90 (0·027) 43 (3·0) 40 (2·0)
Solitary vireo 51 57 (3·7) 59 (5·9)

C Black-throated
Green warbler 47 0·40 (0·057) 0·20 (0·091) 0·13 (0·070) 0·19 (0·072) 0·11 (0·051) 59 (5·4) 60 (7·2)
Red-eyed vireo 72 0·99 (0·016) 0·95 (0·030) 0·85 (0·054) 0·91 (0·050) 90 (7·6) 88 (7·9)

DEF Ovenbird 90 0·36 (0·066) 0·36 (0·062) 96 (3·3) 96 (3·7)
Scarlet Tanager 61 0·58 (0·094)

0·96 (0·021)
68 (3·6) 70 (5·6)

Tufted Titmouse 44 0·44 (0·097) 48 (2·4) 48 (3·3)
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other methods. Increased precision was demonstrated
when no-species-effect or species-covariate models were
selected. Distance models have few parameters to
begin with, so little reduction in the number of param-
eters is achieved with the multiple-species approach.
Multiple-species covariate models (Marques & Buckland
2004) showed slight improvements over no-species-effect
models. Covariate distance models require that the shape
of  the detection function is similar among species.
Models with no species effects require similarity in
both the shape and the scale of the detection function
among species.

While our results did not provide as much support
for multiple-species modelling for distance sampling,
this lack of support may be related to the a priori species
groupings used for these analyses. It is possible that
different characteristics of  the detection process are
important in distance sampling and could prove useful
when using a multiple-species approach. The distance
data used here were primarily from auditory detections
of  birds, which probably has a large distance estima-
tion error (M. Alldredge et al., unpublished data). The
substantial error associated with these data may obscure
the benefits of the approach. In situations where dis-
tances can be estimated accurately, the multiple-species
approach is likely to provide better gains in precision
over a single-species approach.

The multiple-species approach provided more precise
estimates of  abundance for both time of  detection
and multiple observer methods. These methods exploit
similarities among species in song structure and
singing behaviour and are not as sensitive to differences
in detection distance. As these models are closed-
population capture–recapture models, similar benefits
are likely to be realized for capture–recapture experi-
ments of other taxa.

Many sources of  variation can cause individual
differences in animal surveys (Burnham 1981; Johnson,
Burnham & Nichols 1986). Temporal variation in sing-
ing rates (Wasserman 1977; Lein 1981) is one potential
source of these differences. Habitat, local abundance and
proximity to observers have all been shown to affect
singing rates of  breeding songbirds (McShea &
Rappole 1997). Models incorporating individual dif-
ferences among birds were always selected as the most
parsimonious models for our data. Further investiga-
tion is needed to determine the effect of singing rate on
detection probability and to identify and account for
other sources of variation in detection probabilities.

The analyses presented were based on surveys where
detections of birds were auditory, and thus our group-
ings were based on auditory characteristics likely to
affect the detection process. Survey data where animals
are detected visually (open habitat point counts, aerial
surveys, etc.) or are physically captured (mist-netting,
small mammal trapping, electrofishing, etc.) could also
be analysed within this multiple-species framework.
Grouping of species for these situations would depend
on characteristics directly related to the sampling

methods. Groups for visual surveys would be based
on factors affecting visibility, such as size, colour and
activity. Factors affecting the probability of physical
capture are related to the selectivity of the capture
methods being used.



Multiple-species modelling approaches provide more
efficient analyses of  multiple species data. Because
two of the methods presented here are based on closed-
population capture–recapture models, application to
similar approaches, such as Cormack–Jolly Seber (Seber
1982; Williams, Nichols & Conroy 2002) and tag return
models (Brownie et al. 1985; Williams, Nichols &
Conroy 2002), should be similarly beneficial. Although
the additive models were not selected in the analyses
presented here, in some cases they were reasonable
alternative models. Application of additive and partial
effect models for multiple-species analysis should be
investigated further as they do not require similarity
in the detection process among species. The use of
covariates, such as detection distance, as additive effects
in multiple-species models may also prove useful in
explaining species’ differences. This will be particularly
true for rare species, when sample sizes are limiting. A
multiple-species approach allows more precise models
of  rare species because information for parameter
estimation can be ‘borrowed’ from similar but more
common species.
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